RGA Global Headquarters Lateral System Analysis Study

Chesterfield, MO Natasha Beck | Structural

Area Considered

- Seismic expansion joints create four separate structural buildings
- E.J.= 2 ¹/2"

Lateral Elements Modeled

- Two Stage Analysis procedure
- Office: brace frames
- Parking garage: shear & foundation walls

Modeling Process

Modeling Considerations

- Base conditions
 - Brace frames-pinned base
 - Shear walls-pinned base
- Rigid Diaphragms
 - Office-composite concrete T=6 ¹/₂"
 - Parking-slabs 7 ¹/₂" to 9 ¹/₂"
- Irregularities
 - Non-parallel systems irregularity in parking garage

Force Distribution

- Weight at the Level 01 interface
- Penthouse story forces

Animations

Moment Diagrams

Critical Braced Frame

Member Utilization Ratios

Critical Braced Frame

Critical Shear Wall

Braced frame controlling case: 0.9D+1.0E, Seismic Y-5%X

Shear wall controlling case: 0.9D+1.0W, Wind Case 1-Y

Is the System Acceptable?

- System and components are adequate for strength
- Foundation is acceptable
- Serviceability-Drift
 - Wind: Meets both H/400 and H/600 drift limits found in ASCE 7 commentary
 - Seismic: Meets allowable story drift standards
 - Max. concrete building drift= < 1/2*EJ=1.25"
- System is acceptable